【设计模式 创建型】单例模式

news/2024/7/24 3:23:39 标签: 单例模式, 设计模式

类的单例设计模式,就是采取一定的方法保证在整个的软件系统中,对某个类只能存在一个对象实例,并且该类只提供一个取得其对象实例的方法(静态方法)

指一个类只有一个实例,且该类能自行创建这个实例的一种模式

特点:

某个类只能有一个实例(即构造器私有,防止外部通过new XXX()创建对象

自行在类的内部创建对象实例

向外暴露一个静态的公共方法

八种单例模式实现方式:

  • 饿汉式(静态常量)

  • 饿汉式(静态代码块)

  • 懒汉式(线程不安全)

  • 懒汉式(线程安全,同步方法)

  • 懒汉式(线程安全,同步代码块)

  • 双重检查

  • 静态内部类

  • 枚举

饿汉式(静态常量)

public class Singleton {
    //创建实例对象
    private final static Singleton instance = new Singleton();

    /**
     * 构造器私有化,防止外部类能直接new
     */
    private Singleton() {}

    /**
     * 提供一个公有的静态方法,返回实例对象
     * @return
     */
    public static Singleton getInstance() {
        return instance;
    }
}

类装载的时候就完成实例化,避免了线程同步问题,如果从始至终都没有用到这个实例,则会造成内存的浪费

饿汉式(静态代码块)

public class Singleton {
    //实例对象
    private static Singleton instance;

    /**
     * 在静态代码块中,创建单例对象
     */
    static {
        instance = new Singleton();
    }

    /**
     * 构造器私有化,防止外部类能直接new
     */
    private Singleton() {}

    /**
     * 提供一个公有的静态方法,返回实例对象
     * @return
     */
    public static Singleton getInstance() {
        return instance;
    }
}

同上

懒汉式(线程不安全)

当需要使用到对象的时候,才会创建对象即懒汉式

public class Singleton {
    //实例对象
    private static Singleton instance;

    /**
     * 构造器私有化,防止外部类能直接new
     */
    private Singleton() {}

    /**
     * 提供一个公有的静态方法,当使用到该方法时,才会创建instance
     * @return
     */
    public static Singleton getInstance() {
        //若对象为空,则创建
        if (instance == null) {
            instance = new Singleton();
        }
        return instance;
    }
}

起到了懒加载的效果,但是只能在单线程下使用,在实际开发中,不要使用这种方式

懒汉式(线程安全,同步方法)

public class YamlUtils {
    private static YamlUtils instance; // 类实例变量
    private YamlUtils() {
        loadConfig(); // 加载配置信息
    }
   /**
     * 提供一个公有的静态方法,加入同步处理,解决线程安全问题
     * @return
     */
    public static synchronized YamlUtils getInstance() {
        if (instance == null) { // 若实例为空,则创建新实例
            instance = new YamlUtils();
        }
        return instance;
    }

    private void loadConfig() {
    }

}

效率低,每个线程在想获得类的实例时候,执行 getInstance()方法都要进行同步,而其实这个方法只执行一次实例化代码就够了,后面的想获得该类的实例,直接 return 就行,方法进行同步效率太低

在实际开发中,不推荐使用

懒汉式(线程安全,同步代码块)

class Singleton {
    //实例对象
    private static Singleton instance;

    /**
     * 构造器私有化,防止外部类能直接new
     */
    private Singleton() {}

    /**
     * 提供一个公有的静态方法
     * @return
     */
    public static Singleton getInstance() {
        //若对象为空,则创建
        if (instance == null) {
            //同步代码块
            synchronized (Singleton.class) {
                instance = new Singleton();
            }
        }
        return instance;
    }
}

因为上面实现方式的同步方法效率太低,改为同步产生实例化的代码块

同步并不能起到线程同步的作用,假如一个线程进入了判断语句,还没有执行对象实例化,另一个线程也通过了这个判断语句,这是便会产生多个实例

实际开发中,不能使用这种方式

双重检查 🤠

public class Singleton {
    //实例对象
    private static volatile Singleton instance;

    /**
     * 构造器私有化,防止外部类能直接new
     */
    private Singleton() {}

    /**
     * 提供一个公有的静态方法,加入双重检查处理,解决线程安全问题,
     * 同时解决懒加载问题,也保证了效率
     * @return
     */
    public static Singleton getInstance() {
        //实例没创建,才会进入内部的 synchronized代码块
        if (instance == null) {
            synchronized (Singleton.class) {
                //此处再判断一次,可能会出现其他线程创建了实例
                if (instance == null) {
                    instance = new Singleton();
                }
            }
        }
        return instance;
    }
}

1、DoubleCheck 概念是多线程开发中常使用到的,如代码中所示,进行了两次 if (instance == null)检查,这样就保证了线程安全。
2、实例化代码只用执行一次,后面再次访问时,判断 if (instance == null),直接 return 实例化对象,也避免反复进行方法同步。
3、线程安全,延迟加载,效率较高。
4、推荐使用这种单例设计模式

静态内部类 🧐

public class Singleton {
    private Singleton() {}

    /**
     * 静态内部类,类中有一个静态属性
     */
    private static class SingletonInstance {
        private static final Singleton INSTANCE = new Singleton();
    }

    public static final Singleton getInstance() {
        return SingletonInstance.INSTANCE ;
    }
}

1、这种方式采用了类装载的机制来保证初始化实例时只有一个线程。
2、静态内部类方式在 Singleton 类被装载时并不会立即实例化,而是在需要实例化时,调用 getInstance 方法时,才会装载 SingletonInstance 类,从而完成 Singleton 的实例化。
3、类的静态属性只会在第一次加载类的时候初始化,所以在这里,JVM 帮助我们保证了线程的安全性,在类进行初始化时,别的线程是无法进入的。
4、避免了线程不安全,利用静态内部类特点实现延迟加载,效率高,推荐使用。

枚举实现单例模式

public enum Singleton{
    INSTANCE;
    public Singleton getInstance(){
        return INSTANCE;
    }
}

public class SingletonTest01 {
    public static void main(String[] args) {
        Singleton instance1 = Singleton.INSTANCE.getInstance();
        Singleton instance2 = Singleton.INSTANCE.getInstance();
        System.out.println(instance1 == instance2);
        System.out.println("instance1=" + instance1.hashCode());
        System.out.println("instance2=" + instance2.hashCode());
    }
}

1、借助 JDK1.5 中添加的枚举来实现单例模式。不仅能避免多线程同步问题,而且还能防止反序列化重新创建新的对象

推荐使用

总结

1、单例模式保证了系统内存中该类只存在一个对象,节省了系统资源,对于一些需要频繁创建销毁的对象,使用单例模式可以提高系统性能。
2、当想实例化一个单例类的时候,必须要记住使用相应的获取对象的方法,而不是使用 new。
3、单例模式使用的场景:
需要频繁的进行创建和销毁的对象、创建对象时耗时过多或耗费资源过多(即:重量级对象),但又经常用到的对象、工具类对象、频繁访问数据库或文件的对象(如:数据源、session 工厂等)


http://www.niftyadmin.cn/n/5336884.html

相关文章

Cocos在VsCode中调试-端口安全问题 net::ERR_UNSAFE_PORT

问题: POST http://127.0.0.1:6000/api/login net::ERR_UNSAFE_PORT 原因: 这个错误表明你在尝试使用一个被认为是不安全的端口进行网络请求。通常情况下,浏览器会限制使用一些特定的端口,因为它们被认为是潜在的安全风险。 在这种情况下&a…

[AIGC] 深入理解Java并发编程:从入门到进阶

深入理解Java并发编程:从入门到进阶 引言 在计算机领域中,针对多核处理器的高并发需求,Java并发编程成为了一项重要的技能。Java提供了丰富的并发编程工具和API,使得开发者能够有效地利用多核处理器的优势。本文将介绍Java并发编…

Pandas.Series.count() 非空单元格计数 详解 含代码 含测试数据集 随Pandas版本持续更新

关于Pandas版本: 本文基于 pandas2.1.2 编写。 关于本文内容更新: 随着pandas的stable版本更迭,本文持续更新,不断完善补充。 Pandas稳定版更新及变动内容整合专题: Pandas稳定版更新及变动迭持续更新。 Pandas API参…

理解Redux-原理和流程简介

1. redux核心 store: 是一个js对象,存储状态的容器reducer:是一个函数,向store中存储状态,以及更新store中的状态action:是一个js对象,这个对象有一个type属性,描述对store中的状态进行怎样的操…

SPI 动态服务发现机制

SPI(Service Provier Interface)是一种服务发现机制,通过ClassPath下的META—INF/services文件查找文件,自动加载文件中定义的类,再调用forName加载; spi可以很灵活的让接口和实现分离, 让API提…

航空飞行器运维VR模拟互动教学更直观有趣

传统的二手车鉴定评估培训模式存在实践性不强、教学样本不足、与实际脱节等一些固有的不足。有了VR虚拟仿真技术的加持,二手车鉴定评估VR虚拟仿真实训系统逐渐进入实训领域,为院校及企业二手车检测培训提供了全新的解决方案。 高职院校汽车专业虚拟仿真实…

网络安全 | 2024年最全的黑客学习教程,从0到高手,建议收藏!

新手如何通过自学黑客技术成为厉害的黑客高手? 作为一个资深的白帽,平常在补天挖漏洞也能搞个4w。 给大家分享一下我的学习方法,0基础也能上手学习,如果你能坚持学完,你也能成为厉害的白帽子! 一、打好基础 一上来…

一种更快的Kmeans原理与实现

普通的k-means实现大多需要多轮迭代,一轮需要O(n * k)的复杂度,其中n是数据量,k是聚类的数量。观察到大部分地方的标准均值中的大多数距离计算都是冗余的。 所以Elkan-Kmeans通过三角不等式来优化这一过程,减少无效计算。 困难在于三角不等式给出了上界,但我们需要下界以…